organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

8b,8c-Diphenyl-2,6-bis(4-pyridylmethyl)perhydro-2.3a.4a.6.7a.8a-hexaazacvclopenta[def]fluorene-4,8-dithione chloroform solvate

Cong Deng,* Wenming Shu and Dongxue Zhang

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: net_dcong@163.com

Received 27 April 2010; accepted 27 May 2010

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.008 Å; R factor = 0.062; wR factor = 0.210; data-to-parameter ratio = 13.7.

In the thioglycoluril system of the title compound, $C_{32}H_{30}N_8S_2$ ·CHCl₃, the two pyridine rings are roughly parallel, forming a dihedral angle of 7.2 $(1)^{\circ}$, and the distance between the centroids of the two phenyl rings is 3.951 (5) Å. The chloroform solvent molecule is linked to the main molecule via a weak $C-H \cdots N$ hydrogen bond.

Related literature

For applications of glycoluril derivatives, see: Rowan et al. (1999). For the preparation of the title compound, see: Broan et al. (1989); Li et al. (2008).

Experimental

Crystal data C32H30N8S2·CHCl3

 $M_r = 710.13$

Triclinic, $P\overline{1}$	$V = 1673.81 (18) \text{ Å}^3$
a = 9.5381 (6) Å	Z = 2
b = 12.1712 (8) Å	Mo $K\alpha$ radiation
c = 14.8765 (9) Å	$\mu = 0.44 \text{ mm}^{-1}$
$\alpha = 100.978 \ (1)^{\circ}$	T = 294 K
$\beta = 91.699 \ (1)^{\circ}$	$0.20 \times 0.10 \times 0.10$ mm
$\gamma = 98.500 \ (1)^{\circ}$	
Data collection	

Bruker SMART APEX CCD area- detector diffractometer 11061 measured reflections	5690 independent reflections 2136 reflections with $I > 2\sigma(I)$ $R_{int} = 0.109$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.062$	415 parameters
$wR(F^2) = 0.210$	H-atom parameters constrained
S = 0.85	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

5690 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C33-H33···N8 ⁱ	0.98	2.33	3.168 (9)	142 (8)
Symmetry code: (i) -	x + 2 - v + 1 - v	-7 ± 1		

 $\Delta \rho_{\rm min} = -0.39$ e Å⁻³

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Central China Normal University for financial support and to Dr Xiang-Gao Meng for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2714).

References

Broan, C. J., Butler, A. R., Reed, D. & Sadler, I. H. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 731-740.

Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Li, Y. T., Meng, X. G., Cao, L. P., Wang, Y. Z., Yin, G. D., Gao, M., Wen, L. L. & Wu, A. X. (2008). Cryst. Growth Des. 8, 1645-1653.

Rowan, A. E., Elemans, J. A. A. W. & Nolte, R. J. M. (1999). Acc. Chem. Res. 32, 995-1006

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o1524 [doi:10.1107/S1600536810020040]

8b,8c-Diphenyl-2,6-bis(4-pyridylmethyl)perhydro-2,3a,4a,6,7a,8a-hexaazacyclopenta[*def*]fluorene-4,8-dithione chloroform solvate

C. Deng, W. Shu and D. Zhang

Comment

Recently, molecular clips based on concave glycoluril unit have been widely investigated in supramolecular chemistry (Rowan *et al.*, 1999). We report here the structure of the title compound (Fig. 1), which is a derivative of thioglycoluril with two pyridine units. We believe the title compound would offer the possibility in construction of coordination framework with novel patterns (Li *et al.*, 2008). The crystal packing exhibits weak intermolecular C—H…N hydrogen bond (Table 1) between the chloroform solvent molecule and the main molecule.

Experimental

The title compound was synthesized according to the literature (Broan *et al.*, 1989; Li *et al.*, 2008). Crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a chloroform-methanol (1:2) solution of the title compound under 293 K.

Refinement

All H atoms were positioned in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93-0.98 Å and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The low ratio observed/unique reflections (0.38) was mainly caused by poor quality of the crystal selected for measurements.

Figures

Fig. 1. A view of (I), showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.

8b,8c-Diphenyl-2,6-bis(4-pyridylmethyl)perhydro-2,3a,4a,6,7a,8a- hexaazacyclopenta[*def*]fluorene-4,8-dithione chloroform solvate

Crystal data

Å
3

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2136 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.109$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
phi and ω scans	$h = -11 \rightarrow 11$
11061 measured reflections	$k = -14 \rightarrow 13$
5690 independent reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.210$	H-atom parameters constrained
<i>S</i> = 0.85	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1041P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5690 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
415 parameters	$\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Because of the poor quality of crystal, the ratio of Observed/Unique Reflections is 38%.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.4638 (5)	0.4696 (4)	0.1361 (4)	0.0426 (14)
H1A	0.4056	0.4515	0.0790	0.051*
H1B	0.4486	0.5435	0.1685	0.051*
C2	0.6423 (6)	0.3623 (4)	0.0735 (4)	0.0461 (15)
H2A	0.7434	0.3659	0.0658	0.055*
H2B	0.5934	0.3385	0.0133	0.055*
C3	0.4314 (5)	0.4077 (4)	0.2860 (4)	0.0395 (14)
C4	0.6795 (5)	0.2382 (4)	0.1877 (4)	0.0391 (14)
C5	0.4489 (5)	0.2700 (4)	0.1553 (3)	0.0295 (12)
C6	0.3463 (5)	0.2069 (4)	0.0750 (3)	0.0344 (13)
C7	0.3908 (6)	0.1281 (5)	0.0063 (4)	0.0518 (16)
H7	0.4868	0.1222	0.0040	0.062*
C8	0.2952 (6)	0.0585 (5)	-0.0584 (4)	0.0565 (17)
H8	0.3262	0.0045	-0.1031	0.068*
С9	0.1541 (7)	0.0688 (5)	-0.0572 (4)	0.0590 (17)
Н9	0.0895	0.0223	-0.1014	0.071*
C10	0.1082 (6)	0.1478 (5)	0.0096 (4)	0.0546 (16)
H10	0.0125	0.1551	0.0104	0.065*
C11	0.2042 (6)	0.2160 (4)	0.0753 (4)	0.0436 (15)
H11	0.1725	0.2690	0.1205	0.052*
C12	0.4498 (5)	0.2132 (4)	0.2406 (3)	0.0322 (13)
C13	0.3367 (5)	0.1100 (4)	0.2397 (3)	0.0351 (13)
C14	0.2062 (6)	0.1236 (5)	0.2759 (4)	0.0567 (17)
H14	0.1877	0.1954	0.3020	0.068*
C15	0.1037 (7)	0.0290 (6)	0.2726 (4)	0.0675 (19)
H15	0.0167	0.0376	0.2975	0.081*
C16	0.1289 (7)	-0.0762 (6)	0.2335 (5)	0.077 (2)
H16	0.0588	-0.1389	0.2304	0.093*
C17	0.2577 (7)	-0.0896 (5)	0.1986 (5)	0.072 (2)
H17	0.2765	-0.1614	0.1730	0.086*
C18	0.3601 (6)	0.0048 (5)	0.2017 (4)	0.0570 (17)
H18	0.4470	-0.0045	0.1770	0.068*
C19	0.4813 (6)	0.2929 (4)	0.4068 (3)	0.0455 (15)
H19A	0.4783	0.3621	0.4511	0.055*
H19B	0.4162	0.2327	0.4245	0.055*
C20	0.6388 (6)	0.1716 (4)	0.3368 (4)	0.0469 (15)
H20A	0.5837	0.1033	0.3497	0.056*
H20B	0.7376	0.1611	0.3364	0.056*
C21	0.7120 (6)	0.5325 (5)	0.1933 (4)	0.0530 (16)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H21A	0.7130	0.4839	0.2379	0.064*
H21B	0.6786	0.6012	0.2227	0.064*
C22	0.8592 (6)	0.5619 (4)	0.1653 (4)	0.0482 (16)
C23	0.8900 (6)	0.6050 (5)	0.0882 (4)	0.0577 (17)
H23	0.8157	0.6157	0.0505	0.069*
C24	1.0254 (7)	0.6325 (5)	0.0652 (5)	0.068 (2)
H24	1.0400	0.6619	0.0124	0.081*
C25	1.1118 (7)	0.5806 (6)	0.1887 (5)	0.073 (2)
H25	1.1882	0.5730	0.2261	0.088*
C26	0.9754 (8)	0.5499 (6)	0.2152 (5)	0.075 (2)
H26	0.9635	0.5204	0.2682	0.090*
C27	0.7389 (6)	0.3621 (5)	0.4180 (4)	0.0481 (15)
H27A	0.7105	0.4275	0.4570	0.058*
H27B	0.7554	0.3804	0.3582	0.058*
C28	0.8721 (5)	0.3375 (4)	0.4579 (4)	0.0384 (14)
C29	1.0046 (6)	0.3720 (4)	0.4278 (4)	0.0505 (16)
H29	1.0126	0.4087	0.3784	0.061*
C30	1.1231 (6)	0.3516 (5)	0.4715 (5)	0.0576 (18)
H30	1.2098	0.3761	0.4491	0.069*
C31	0.9976 (8)	0.2679 (6)	0.5694 (5)	0.084 (2)
H31	0.9927	0.2311	0.6189	0.101*
C32	0.8720 (7)	0.2838 (6)	0.5309 (5)	0.0676 (19)
H32	0.7865	0.2582	0.5542	0.081*
C33	0.6754 (7)	0.8554 (6)	0.3853 (5)	0.076 (2)
H33	0.6949	0.7839	0.4001	0.091*
Cl1	0.7802 (3)	0.9693 (2)	0.4618 (2)	0.1451 (11)
C12	0.4992 (2)	0.86364 (19)	0.39764 (19)	0.1222 (10)
C13	0.7234 (2)	0.86119 (18)	0.27531 (15)	0.1061 (8)
N1	0.4182 (4)	0.3843 (3)	0.1924 (3)	0.0370 (11)
N2	0.5961 (4)	0.2785 (3)	0.1304 (3)	0.0380 (12)
N3	0.4351 (4)	0.3080 (3)	0.3151 (3)	0.0349 (11)
N4	0.5925 (4)	0.1866 (3)	0.2456 (3)	0.0342 (11)
N5	0.6126 (5)	0.4746 (4)	0.1154 (3)	0.0446 (12)
N6	1.1383 (6)	0.6195 (4)	0.1144 (5)	0.0697 (17)
N7	0.6238 (4)	0.2652 (3)	0.4087 (3)	0.0388 (11)
N8	1.1278 (6)	0.3010 (5)	0.5420 (5)	0.0756 (17)
S1	0.85378 (14)	0.24229 (12)	0.18583 (10)	0.0545 (5)
S2	0.43168 (16)	0.53272 (12)	0.35358 (10)	0.0527 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.042 (3)	0.042 (3)	0.044 (3)	0.002 (3)	0.006 (3)	0.013 (3)
C2	0.042 (3)	0.056 (4)	0.040 (3)	0.002 (3)	0.015 (3)	0.009 (3)
C3	0.026 (3)	0.050 (4)	0.046 (4)	0.009 (3)	0.014 (3)	0.012 (3)
C4	0.038 (3)	0.028 (3)	0.046 (3)	0.004 (3)	0.014 (3)	-0.006 (2)
C5	0.025 (3)	0.032 (3)	0.031 (3)	0.006 (2)	0.004 (2)	0.003 (2)
C6	0.039 (3)	0.032 (3)	0.032 (3)	0.001 (2)	0.010 (3)	0.006 (2)

07	0.020 (2)	0.055(4)	0.052 (4)	0.002 (2)	0.012(2)	0.000(2)	
C7	0.039(3)	0.055(4)	0.052 (4)	-0.002(3)	0.013(3)	-0.009(3)	
	0.047(4)	0.065 (4)	0.047(4)	0.000 (3)	0.000 (3)	-0.012(3)	
C9	0.061 (4)	0.058 (4)	0.046 (4)	-0.009(3)	-0.003(3)	-0.005(3)	
C10	0.034 (3)	0.055 (4)	0.072(5)	-0.003(3)	-0.002(3)	0.014(3)	
	0.042(3)	0.040 (3)	0.046 (4)	0.002(3)	0.014(3)	0.005 (3)	
C12	0.026 (3)	0.032(3)	0.037(3)	0.001 (2)	0.007 (2)	0.005 (2)	
C13	0.035 (3)	0.038 (3)	0.034 (3)	-0.002(3)	0.000(3)	0.015 (2)	
C14	0.050 (4)	0.060 (4)	0.054 (4)	-0.006 (3)	0.018 (3)	0.007 (3)	
C15	0.046 (4)	0.090 (5)	0.058 (4)	-0.019 (4)	0.009 (3)	0.013 (4)	
C16	0.066 (5)	0.066 (5)	0.091 (5)	-0.026 (4)	0.008 (4)	0.020 (4)	
C17	0.066 (5)	0.038 (4)	0.104 (6)	-0.006(3)	-0.002(4)	0.007 (4)	
C18	0.044 (4)	0.039 (4)	0.083 (5)	-0.007 (3)	0.009 (3)	0.009 (3)	
C19	0.053 (4)	0.047 (3)	0.036 (3)	0.006 (3)	0.014 (3)	0.008 (3)	
C20	0.038 (3)	0.039 (3)	0.066 (4)	0.008 (3)	0.008 (3)	0.013 (3)	
C21	0.050 (4)	0.047 (4)	0.053 (4)	-0.010 (3)	0.012 (3)	0.002 (3)	
C22	0.039 (4)	0.040 (3)	0.060 (4)	-0.006 (3)	0.006 (3)	0.004 (3)	
C23	0.041 (4)	0.067 (4)	0.066 (4)	0.001 (3)	0.012 (3)	0.022 (3)	
C24	0.055 (4)	0.070 (5)	0.086 (5)	0.008 (4)	0.010 (4)	0.034 (4)	
C25	0.034 (4)	0.101 (6)	0.083 (5)	0.000 (4)	-0.019 (4)	0.026 (5)	
C26	0.065 (5)	0.082 (5)	0.077 (5)	-0.017 (4)	0.012 (4)	0.032 (4)	
C27	0.051 (4)	0.048 (4)	0.044 (4)	0.008 (3)	0.002 (3)	0.005 (3)	
C28	0.030 (3)	0.040 (3)	0.040 (3)	0.003 (3)	-0.006 (3)	0.000 (3)	
C29	0.040 (4)	0.047 (4)	0.057 (4)	-0.007 (3)	0.009 (3)	0.002 (3)	
C30	0.025 (3)	0.064 (4)	0.075 (5)	0.006 (3)	-0.008 (3)	-0.006 (4)	
C31	0.069 (5)	0.110 (6)	0.084 (6)	0.004 (5)	-0.016 (5)	0.056 (5)	
C32	0.042 (4)	0.085 (5)	0.078 (5)	-0.004 (4)	0.007 (4)	0.031 (4)	
C33	0.083 (5)	0.081 (5)	0.075 (5)	0.032 (4)	0.004 (4)	0.029 (4)	
Cl1	0.178 (3)	0.1084 (19)	0.139 (2)	0.0305 (19)	-0.036 (2)	0.0012 (17)	
Cl2	0.0895 (16)	0.1205 (19)	0.178 (2)	0.0245 (14)	0.0594 (16)	0.0679 (17)	
C13	0.1197 (18)	0.1078 (16)	0.0969 (16)	0.0181 (14)	0.0459 (14)	0.0292 (12)	
N1	0.041 (3)	0.034 (2)	0.034 (3)	0.003 (2)	0.012 (2)	0.0037 (19)	
N2	0.029 (3)	0.039 (3)	0.044 (3)	-0.001 (2)	0.013 (2)	0.005 (2)	
N3	0.033 (2)	0.038 (3)	0.032 (3)	0.003 (2)	0.011 (2)	0.0018 (19)	
N4	0.028 (2)	0.032 (2)	0.040 (3)	0.0028 (19)	0.003 (2)	0.0026 (19)	
N5	0.041 (3)	0.044 (3)	0.046 (3)	-0.004 (2)	0.011 (2)	0.010 (2)	
N6	0.062 (4)	0.056 (3)	0.090 (5)	-0.003 (3)	0.027 (4)	0.017 (3)	
N7	0.030 (2)	0.043 (3)	0.042 (3)	0.003 (2)	0.002 (2)	0.008 (2)	
N8	0.057 (4)	0.079 (4)	0.095 (5)	0.019 (3)	-0.005 (4)	0.021 (4)	
S1	0.0312 (8)	0.0584 (10)	0.0680 (11)	0.0046 (7)	0.0157 (8)	-0.0022 (8)	
S2	0.0588 (10)	0.0434 (9)	0.0501 (9)	0.0087 (8)	0.0122 (8)	-0.0072 (7)	
	~ /			~ /	~ /	. ,	
	0						
Geometric pa	Geometric parameters (Å, °)						

C1—N5	1.456 (6)	C18—H18	0.9300
C1—N1	1.479 (6)	C19—N7	1.449 (6)
C1—H1A	0.9700	C19—N3	1.474 (6)
C1—H1B	0.9700	C19—H19A	0.9700
C2—N5	1.462 (6)	C19—H19B	0.9700
C2—N2	1.472 (6)	C20—N7	1.434 (6)

C2—H2A	0.9700	C20—N4	1.466 (7)
C2—H2B	0.9700	C20—H20A	0.9700
C3—N1	1.366 (6)	С20—Н20В	0.9700
C3—N3	1.368 (6)	C21—N5	1.471 (7)
C3—S2	1.656 (5)	C21—C22	1.488 (7)
C4—N2	1.355 (6)	C21—H21A	0.9700
C4—N4	1.386 (6)	C21—H21B	0.9700
C4—S1	1.657 (5)	C22—C26	1.357 (8)
C5—N2	1.457 (5)	C22—C23	1.372 (8)
C5—N1	1.470 (5)	C23—C24	1.356 (8)
C5—C6	1.527 (7)	С23—Н23	0.9300
C5—C12	1.557 (7)	C24—N6	1.329 (8)
C6—C11	1.376 (6)	C24—H24	0.9300
C6—C7	1.385 (6)	C25—N6	1.300 (8)
C7—C8	1.373 (7)	C25—C26	1.390 (8)
С7—Н7	0.9300	С25—Н25	0.9300
C8—C9	1.370 (7)	С26—Н26	0.9300
С8—Н8	0.9300	C27—N7	1.469 (6)
C9—C10	1.374 (7)	C27—C28	1.481 (7)
С9—Н9	0.9300	С27—Н27А	0.9700
C10—C11	1.377 (7)	С27—Н27В	0.9700
C10—H10	0.9300	C28—C32	1.369 (8)
C11—H11	0.9300	C28—C29	1.386 (7)
C12—N4	1.448 (6)	C29—C30	1.365 (8)
C12—N3	1.467 (5)	С29—Н29	0.9300
C12—C13	1.528 (6)	C30—N8	1.316 (8)
C13—C18	1.350 (7)	С30—Н30	0.9300
C13—C14	1.391 (6)	C31—N8	1.348 (8)
C14—C15	1.389 (8)	C31—C32	1.368 (9)
C14—H14	0.9300	C31—H31	0.9300
C15—C16	1.361 (8)	С32—Н32	0.9300
С15—Н15	0.9300	C33—Cl2	1.711 (6)
C16—C17	1.367 (8)	C33—Cl3	1.724 (7)
С16—Н16	0.9300	C33—Cl1	1.772 (8)
C17—C18	1.386 (7)	С33—Н33	0.9800
С17—Н17	0.9300		
N5—C1—N1	112.5 (4)	N7—C20—H20A	108.9
N5—C1—H1A	109.1	N4—C20—H20A	108.9
N1—C1—H1A	109.1	N7—C20—H20B	108.9
N5—C1—H1B	109.1	N4—C20—H20B	108.9
N1—C1—H1B	109.1	H20A—C20—H20B	107.7
H1A—C1—H1B	107.8	N5-C21-C22	112.7 (4)
N5—C2—N2	111.2 (4)	N5-C21-H21A	109.0
N5—C2—H2A	109.4	C22—C21—H21A	109.0
N2—C2—H2A	109.4	N5—C21—H21B	109.0
N5—C2—H2B	109.4	C22—C21—H21B	109.0
N2—C2—H2B	109.4	H21A—C21—H21B	107.8
H2A—C2—H2B	108.0	C26—C22—C23	114.0 (6)
N1—C3—N3	108.0 (4)	C26—C22—C21	122.6 (6)

N1—C3—S2	126.4 (4)	C23—C22—C21	123.4 (6)
N3—C3—S2	125.4 (4)	C24—C23—C22	122.0 (6)
N2	108.0 (4)	С24—С23—Н23	119.0
N2—C4—S1	126.5 (4)	С22—С23—Н23	119.0
N4—C4—S1	125.4 (5)	N6—C24—C23	123.4 (6)
N2	108.9 (4)	N6—C24—H24	118.3
N2—C5—C6	111.8 (3)	C23—C24—H24	118.3
N1—C5—C6	112.8 (4)	N6—C25—C26	123.5 (7)
N2	103.1 (4)	N6—C25—H25	118.2
N1—C5—C12	103.9 (3)	С26—С25—Н25	118.2
C6—C5—C12	115.6 (4)	C22—C26—C25	121.4 (6)
C11—C6—C7	118.3 (5)	С22—С26—Н26	119.3
C11—C6—C5	120.8 (4)	С25—С26—Н26	119.3
C7—C6—C5	120.4 (4)	N7—C27—C28	111.6 (4)
C8—C7—C6	120.9 (5)	N7—C27—H27A	109.3
С8—С7—Н7	119.5	C28—C27—H27A	109.3
С6—С7—Н7	119.5	N7—C27—H27B	109.3
C9—C8—C7	120.0 (5)	С28—С27—Н27В	109.3
С9—С8—Н8	120.0	H27A—C27—H27B	108.0
С7—С8—Н8	120.0	C32—C28—C29	115.7 (6)
C8—C9—C10	119.9 (6)	C32—C28—C27	121.4 (5)
С8—С9—Н9	120.0	C29—C28—C27	122.8 (5)
С10—С9—Н9	120.0	C30—C29—C28	119.3 (6)
C9—C10—C11	119.8 (5)	С30—С29—Н29	120.3
С9—С10—Н10	120.1	С28—С29—Н29	120.3
C11—C10—H10	120.1	N8—C30—C29	126.9 (6)
C6—C11—C10	121.0 (5)	N8—C30—H30	116.5
C6—C11—H11	119.5	С29—С30—Н30	116.5
C10-C11-H11	119.5	N8—C31—C32	125.7 (7)
N4—C12—N3	109.6 (4)	N8—C31—H31	117.2
N4—C12—C13	112.3 (4)	C32—C31—H31	117.2
N3—C12—C13	112.3 (3)	C31—C32—C28	120.0 (6)
N4—C12—C5	103.0 (3)	С31—С32—Н32	120.0
N3—C12—C5	101.7 (4)	C28—C32—H32	120.0
C13—C12—C5	116.9 (4)	Cl2—C33—Cl3	112.1 (4)
C18—C13—C14	119.0 (5)	Cl2—C33—Cl1	109.7 (4)
C18—C13—C12	120.8 (4)	Cl3—C33—Cl1	108.3 (4)
C14—C13—C12	120.2 (4)	Cl2—C33—H33	108.9
C15—C14—C13	119.3 (5)	Cl3—C33—H33	108.9
C15—C14—H14	120.4	Cl1—C33—H33	108.9
C13—C14—H14	120.4	C3—N1—C5	111.1 (4)
C16—C15—C14	120.8 (6)	C3—N1—C1	123.0 (4)
C16—C15—H15	119.6	C5—N1—C1	114.7 (3)
C14—C15—H15	119.6	C4—N2—C5	112.7 (4)
C15—C16—C17	119.8 (6)	C4—N2—C2	126.8 (4)
C15—C16—H16	120.1	C5—N2—C2	116.3 (4)
C17—C16—H16	120.1	C3—N3—C12	113.4 (4)
C16—C17—C18	119.5 (6)	C3—N3—C19	127.7 (4)
C16—C17—H17	120.3	C12—N3—C19	114.3 (4)

C18—C17—H17	120.3	C4—N4—C12	111.8 (4)
C13—C18—C17	121.6 (5)	C4—N4—C20	124.5 (4)
C13—C18—H18	119.2	C12—N4—C20	113.6 (4)
C17-C18-H18	119.2	C1—N5—C2	110.7 (4)
N7—C19—N3	111.8 (4)	C1—N5—C21	113.8 (4)
N7—C19—H19A	109.3	C2—N5—C21	113.6 (4)
N3—C19—H19A	109.3	C25—N6—C24	115.7 (6)
N7—C19—H19B	109.3	C20—N7—C19	111.5 (4)
N3—C19—H19B	109.3	C20—N7—C27	114.4 (4)
H19A—C19—H19B	107.9	C19—N7—C27	115.4 (4)
N7—C20—N4	113.5 (4)	C30—N8—C31	112.4 (6)
N2-C5-C6-C11	-162.1 (4)	C12—C5—N1—C3	12.7 (5)
N1-C5-C6-C11	-38.9 (6)	N2	48.5 (6)
C12—C5—C6—C11	80.4 (6)	C6—C5—N1—C1	-76.3 (5)
N2—C5—C6—C7	26.4 (7)	C12—C5—N1—C1	157.8 (4)
N1—C5—C6—C7	149.6 (4)	N5—C1—N1—C3	87.6 (5)
C12—C5—C6—C7	-91.1 (5)	N5-C1-N1-C5	-52.9 (6)
C11—C6—C7—C8	-1.8 (8)	N4—C4—N2—C5	8.2 (5)
C5—C6—C7—C8	170.0 (5)	S1—C4—N2—C5	-175.2 (3)
C6—C7—C8—C9	1.8 (9)	N4—C4—N2—C2	163.9 (4)
C7—C8—C9—C10	-0.8 (10)	S1—C4—N2—C2	-19.5 (7)
C8—C9—C10—C11	-0.3 (9)	N1—C5—N2—C4	108.8 (4)
C7—C6—C11—C10	0.7 (8)	C6—C5—N2—C4	-125.8 (4)
C5-C6-C11-C10	-171.0 (5)	C12—C5—N2—C4	-1.1 (5)
C9—C10—C11—C6	0.4 (9)	N1—C5—N2—C2	-49.6 (5)
N2-C5-C12-N4	-5.9 (4)	C6—C5—N2—C2	75.7 (5)
N1—C5—C12—N4	-119.5 (4)	C12—C5—N2—C2	-159.5 (4)
C6—C5—C12—N4	116.3 (4)	N5-C2-N2-C4	-101.2 (5)
N2-C5-C12-N3	107.6 (4)	N5-C2-N2-C5	53.7 (6)
N1-C5-C12-N3	-6.0 (4)	N1—C3—N3—C12	10.3 (5)
C6-C5-C12-N3	-130.1 (4)	S2—C3—N3—C12	-173.6 (3)
N2-C5-C12-C13	-129.7 (4)	N1—C3—N3—C19	164.3 (4)
N1-C5-C12-C13	116.7 (4)	S2—C3—N3—C19	-19.6 (7)
C6—C5—C12—C13	-7.4 (5)	N4—C12—N3—C3	106.3 (5)
N4-C12-C13-C18	-31.2 (7)	C13—C12—N3—C3	-128.0 (4)
N3—C12—C13—C18	-155.3 (5)	C5—C12—N3—C3	-2.2 (5)
C5-C12-C13-C18	87.6 (6)	N4—C12—N3—C19	-51.3 (5)
N4-C12-C13-C14	150.7 (5)	C13—C12—N3—C19	74.4 (5)
N3—C12—C13—C14	26.6 (7)	C5-C12-N3-C19	-159.8 (4)
C5-C12-C13-C14	-90.4 (5)	N7—C19—N3—C3	-101.1 (5)
C18—C13—C14—C15	0.4 (9)	N7—C19—N3—C12	52.7 (5)
C12—C13—C14—C15	178.6 (5)	N2—C4—N4—C12	-12.5 (5)
C13—C14—C15—C16	-0.9 (10)	S1—C4—N4—C12	170.8 (3)
C14—C15—C16—C17	1.4 (11)	N2-C4-N4-C20	-155.4 (4)
C15—C16—C17—C18	-1.5 (11)	S1—C4—N4—C20	27.9 (6)
C14—C13—C18—C17	-0.5 (9)	N3—C12—N4—C4	-96.3 (4)
C12—C13—C18—C17	-178.6 (5)	C13—C12—N4—C4	138.1 (4)
C16—C17—C18—C13	1.1 (10)	C5-C12-N4-C4	11.3 (5)
N5-C21-C22-C26	-139.0 (6)	N3—C12—N4—C20	50.8 (5)

N5-C21-C22-C23	42.0 (7)	C13-C12-N4-C20	-74.8 (5)
C26—C22—C23—C24	0.0 (9)	C5-C12-N4-C20	158.5 (4)
C21—C22—C23—C24	179.1 (5)	N7-C20-N4-C4	89.0 (5)
C22—C23—C24—N6	0.5 (10)	N7-C20-N4-C12	-53.3 (5)
C23—C22—C26—C25	0.7 (9)	N1-C1-N5-C2	53.9 (6)
C21—C22—C26—C25	-178.4 (5)	N1-C1-N5-C21	-75.5 (6)
N6-C25-C26-C22	-2.0 (11)	N2-C2-N5-C1	-53.5 (6)
N7—C27—C28—C32	-43.3 (7)	N2-C2-N5-C21	76.0 (5)
N7—C27—C28—C29	140.3 (5)	C22-C21-N5-C1	-165.7 (4)
C32—C28—C29—C30	-0.2 (8)	C22—C21—N5—C2	66.4 (6)
C27—C28—C29—C30	176.3 (5)	C26—C25—N6—C24	2.3 (10)
C28—C29—C30—N8	-0.1 (9)	C23-C24-N6-C25	-1.6 (10)
N8—C31—C32—C28	0.0 (12)	N4-C20-N7-C19	52.5 (6)
C29—C28—C32—C31	0.3 (9)	N4-C20-N7-C27	-80.7 (5)
C27—C28—C32—C31	-176.3 (6)	N3—C19—N7—C20	-51.7 (5)
N3—C3—N1—C5	-14.4 (5)	N3—C19—N7—C27	81.0 (5)
S2—C3—N1—C5	169.5 (3)	C28-C27-N7-C20	-72.7 (5)
N3—C3—N1—C1	-156.2 (4)	C28—C27—N7—C19	155.9 (4)
S2—C3—N1—C1	27.7 (6)	C29—C30—N8—C31	0.4 (9)
N2—C5—N1—C3	-96.7 (5)	C32-C31-N8-C30	-0.3 (11)
C6—C5—N1—C3	138.6 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C33—H33…N8 ⁱ	0.98	2.33	3.168 (9)	142 (8)
Symmetry codes: (i) $-x+2, -y+1, -z+1$.				

